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ABSTRACT

The San Andreas and San Jacinto faults are the primary plate-boundary 
structures in southern California and present a large earthquake hazard for 
the region. They approach each other in the Cajon Pass area between the 
San Gabriel and San Bernardino Mountains, where the northern end of the 
San Jacinto fault forms a 2-km-wide releasing step with the San  Andreas 
fault. In this study, we used paleoseismic data from sites on the San  Jacinto 
and San Andreas faults near their juncture to evaluate spatial and temporal 
patterns of surface rupture between these major structures of the North 
American–Pacific transform plate boundary. We present a new 3700  yr 
paleo seismic record from the northern San Jacinto fault at Mystic Lake, 
where trench excavations exposed evidence for at least 16 surface ruptures. 
A sedimentary gap in our trench exposures separates three ruptures in 
the oldest part of the record from 13 ruptures during the past 2000 yr. For 
the past 2000 yr, the mean recurrence times varied from 86 to 312 yr, with 
a mean recurrence interval of 160 yr. This rate of surface rupture is roughly 
equal to that of the southern San Andreas fault south of the Cajon Pass 
juncture, but it is half that of the San Andreas fault north of the juncture, 
indicating that coseismic strain on the San Andreas fault is split between 
the southern San Andreas and San Jacinto faults south of Cajon Pass. Com-
parison of the past 2000 yr of the Mystic Lake record to similar paleoseismic 
records from nearby sections of the San Andreas fault suggests that: (1) the 
current open interval on these two faults in the study area is longer than 
their average recurrence intervals, but that similar intervals of quiescence 
have occurred in the past 2000 yr; (2) the San Andreas and San Jacinto 
faults have probably ruptured together multiple times in the past 2000 yr; 
and (3) a joint rupture of the San Jacinto fault with the Mojave section of 
the San Andreas fault may be a more likely source of a major earthquake in 
southern California than a rupture on the San Andreas fault from the Mojave 
segment to the southern end of the fault.

INTRODUCTION

The interaction between major faults in the San Andreas fault system is a 
primary concern for earthquake hazards in California, and it is crucial to under
standing the dynamics of the plate boundary. Continental plate boundaries 
typi cally consist of multiple faults that accommodate the relative motion be
tween lithospheric plates. Individual faults in these plateboundary systems 
can link to each other via steps or splays, and the size and lateral extent of 
earthquake ruptures depend on whether or not ruptures can propagate through 
these junctions. It is therefore critical to understand how neighboring faults 
interact in  order to understand, and forecast, earthquake behavior within a fault 
system. The relative abundance of paleoseismic data from faults in the San 
Andreas fault system in California presents an opportunity to study the degree 
and nature of interaction between separate faults on time scales of hundreds to 
thousands of years. In this paper, we present new paleoseismic data from the 
northern San Jacinto fault in southern California that we compare with similar 
data from the adjacent San Andreas fault to evaluate the 2000 yr history and 
spatial pattern of earthquake ruptures on these two faults near their junction.

Geologic and geodetic data show that along the North American–Pacific 
plate boundary in central California, the San Andreas fault accommodates 
~70% of the total displacement across the boundary (e.g., Thatcher, 1979; Sieh 
and Jahns, 1984; Prescott et  al., 2001). In southern California, however, the 
~35 mm/yr late Quaternary slip rate on the Mojave section of the San Andreas 
fault (e.g., UCERF3 appendix B in Dawson and Weldon, 2013) decreases to the 
southeast though the Cajon Pass to only 7–16 mm/yr along the San Bernardino 
section of the San Andreas fault (Fig. 1; McGill et al., 2015, 2013; Spinler et al., 
2010). The San Jacinto fault diverges southward from the San Andreas fault in 
the Cajon Pass area and makes up for most of the missing slip rate, with a slip 
rate of 13–18 mm/yr (McGill et al., 2015; Onderdonk et al., 2015; Blisniuk et al., 
2013). Displacement must be transferred between the San Jacinto fault and 
San Andreas fault across a stepover between the two faults at the north end of 
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the San Jacinto fault in the Cajon Pass (i.e., Morton and Matti, 1993; Machette 
et al., 2004; McGill et al., 2013), but it is not known whether this occurs only as 
interseismic strain accommodation, or if the two faults have ruptured together. 
Anderson et al. (2003) used both static and dynamic stress modeling to infer 
that a rupture on the northern San Jacinto fault will increase Coulomb stress 
on the Mojave segment of the San Andreas fault and possibly lead to simul
taneous rupture. They also modeled a southwardpropagating rupture on the 
Mojave section of the San Andreas fault and showed that resultant rupture 
on the San Jacinto fault was possible. Other studies (Sanders, 1993; Pollitz 

and Sacks, 1992) have suggested that historic earthquakes on the San Jacinto 
fault have been triggered by stress changes due to the A.D. 1857 event on the 
Mojave section of the San Andreas fault. Grant Ludwig et al. (2015) showed 
that the presence of precariously balanced rocks near the juncture of the San 
Jacinto fault and San Andreas fault is more consistent with the lower ground 
motions expected from joint rupture of the San Jacinto fault and Mojave sec
tion of the San Andreas fault than from a rupture passing through the area 
on the San Andreas fault. This led them to hypothesize that most ruptures in 
the area initiate at, terminate at, or pass through the stepover between the 
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Figure 1. Simplified fault map of southern 
California with major faults (black lines), 
and recently dominant strands of the San 
Andreas fault and San Jacinto fault (SJF) in 
bold. Teeth are shown on the hanging wall 
of reverse faults in the Transverse Ranges. 
Dots indicate paleoseismic sites (BF—Burro 
Flats, C—Colton, HL—Hog Lake, ML— 
Mystic Lake, PL—Plunge Creek, PT—Pitman 
Canyon, Q—Quincy, W—Wrightwood). The 
San Gorgonio Pass (SGP), Mojave sec-
tion (M section), San Bernardino section 
(SB section), and Coachella Valley section 
(CV section) of the San Andreas fault are 
 labeled. Inset map shows location within 
Cali fornia, with the cities of San Francisco 
(SF) and Los Angeles (LA) for reference.
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San Jacinto fault and San Andreas fault. Dynamic rupture modeling of the 
San  Andreas fault–San Jacinto fault junction by Lozos (2016) supported this 
idea and showed that historic and paleoseismic evidence for the A.D. 1812 
earthquake on the San Andreas fault is best explained by joint rupture of the 
San  Jacinto fault and San Andreas fault during that event. Here, we show that 
paleo seismic data from the past 2000 yr strongly support the hypothesis of 
joint rupture and suggest that some ruptures during this time period have 
passed through the step between the San Andreas fault and San Jacinto fault. 
We propose that this scenario is more likely than a similarly large rupture in
volving the entire southern San Andreas fault, based on the fault zone geom
etries and earthquake histories of the two faults.

METHODS

Our new paleoseismic data were collected from fault trenches excavated 
across the Claremont strand of the northern San Jacinto fault at Mystic Lake 
(Fig. 1). The Mystic Lake paleoseismic site is a 400mwide by 600mlong 
sag that developed due to subsidence and periodic ponding of water against 

scarps that formed during surface ruptures (Fig. 2). Initial trenching at the site 
(trenches T1, T2, T3, T4) was done in 2009 to precisely locate the primary ac
tive fault strand (fault A at the southwestern side of the sag), and to evaluate 
the relative activity of three additional fault strands (B, C, and D) that form 
scarps bounding the northeastern side of the sag. Three additional trenches 
(T5, T6, T7) were excavated in 2010 to a depth of 1.5 m across fault A to pro
vide additional exposures and identify the best stratigraphic location along 
the primary active fault strand. These shallow trenches exposed evidence for 
seven earthquakes since A.D. 500 (Onderdonk et al., 2013), and cone pene
trometer testing across the sag documented the progressive growth of the 
sag over the past 7000 yr (Marliyani et al., 2013). Here, we present and discuss 
data from additional deeper trenches that were excavated in the same loca
tion as trench 6 (Fig. 2), where the stratigraphy was preserved the best along 
the fault. We excavated a 4mdeep trench in 2012 (T8), and a 5.5mdeep 
trench in 2013 (T9). Both trenches were benched with 1.5–1.75mtall bench 
walls (Fig. 3). The trench exposures allowed us to significantly refine the tim
ing of the previously documented earthquakes with radiocarbon dating of 
additional samples, and extend the paleoseismic record farther back in time 
to ca. 1700 B.C.
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Figure 2. Faults (black lines), and trenches 
(yellow lines) of the Mystic Lake paleo-
seismic site mapped on a 1940 air photo. 
Upper-right side of the photo shows the 
higher topography of the San Timoteo 
Badlands and associated canyons that 
drain into the lower elevations of Mystic 
Lake at the lower-left corner of the photo. 
Note the water (lighter gray) that is filling 
the sag on the northeast side of fault A at 
the time the photograph was taken; this 
sag depression is now completely filled 
with sediment. The outlines of active fans 
are shown as dashed black lines. Trenches 
1 through 7 were excavated in 2009 and 
2010 (detailed results in Onderdonk et al., 
2013), and trenches 8 and 9 were exca-
vated in 2012 and 2013, respectively.
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Trench walls were scraped and cleaned by hand before a string grid was 
set up to divide the exposure into 1mwide by 0.5mtall panels. Stratigraphic 
units were identified, named, traced along the trench, and correlated with 
known units exposed in previous trenches. All trench panels were photo
graphed and then digitally assembled into mosaics. Stratigraphic and struc
tural relationships were then described and drawn onto the printed photo 
mosaics in the field. Datable material was collected and cataloged, and the 
locations were marked on the trench walls. Over 700 samples were collected 
for radiocarbon dating, and 118 of these were dated at the Keck Carbon  Cycle 
Accelerator Mass Spectrometry Program at the University of California,  Irvine 
(Table 1). Several models of the stratigraphic unit ages were developed and 
evaluated based on the dated samples and their relative stratigraphic posi
tion. Most of the samples collected were detrital charcoal, so there was an 

unknown amount of time between the formation of the charcoal during a 
brush fire and deposition of the charcoal into the stratigraphic section. Conse
quently, a stratigraphic layer is equal to or younger than the charcoal it con
tains. We therefore assumed that the youngest charcoal age from each layer 
provides the closest approximation of the age of that layer, and that radiocar
bon samples with ages that are older than samples in underlying units do not 
represent the true age of the unit that contains them. Using these assump
tions, we eliminated almost half of the dated samples, and our stratigraphic 
model is based on 70 samples (Table 1). An event history for the site was then 
determined using OxCal software version 4.3 (Bronk Ramsey, 2009), which 
calculates the probability density functions of radiocarbon sample ages and 
the event ages based on the dendrochronologically calibrated radiocarbon 
curve of Reimer et al. (2013).
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Figure 3. View looking northeast at trench 9 showing benched excavation across fault A. The maximum depth of the trench was 5.5 m in the lowest bench.
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TABLE 1. RADIOCARBON DATES

Events Unit Sample no. Trench panel* 14C age (yr B.P.) ±1σ

Event 0 Top of 10

10 238 63 Modern

Event 1 Top of 100

A.D. 1744 to A.D. 1853 
Mean = A.D. 1823

100-200 T7-13 18 105 15
100-200 T6-64 17 120 15
100-200 T7-44 18 130 15
100-200 T7-43 5 620 15

100 T7-26 15 1740 90
190 T1-214 16 355 20

Event 2 Top of 200

A.D. 1665 to A.D. 1729
Mean = A.D. 1690

200 T1-219 33 40 20
200 T1-7 E1 370 20
230 T1-210 16 195 20
240 T1-55 E20 300 20
250 T1-93p E57 195 20
270 T7-1 2 295 15
290 T1-220 34 670 90
290 T1-125 E67 345 20
290 T7-4 4 355 20
290 T1-65 E27 375 20
290 T1-208 16 625 20

Event 3 Top of 300

A.D. 1520 to A.D. 1610
Mean = A.D. 1568

300 T1-5p E1 370 20
310 T1-221 34 820 20
320 T1-92p E56 325 20

320-340 T7-9 9 325 15
340 T1-51 E20 390 20
360 T7-3 3 340 15
370 T1-212 17 1310 20
370 T1-209 16 1095 20
370 T1-226 49 865 20
370 T6-49 12 440 15
370 T6-48 12 445 15
370 T6-52 14 1210 15
390 T7-7 11 475 15

Event 4 Top of 400

A.D. 1434 to A.D. 1450
Mean = A.D. 1442

400 T6-22 8 545 15
400 T6-25 8 1120 15
400 T8-400s Seed from bulk sample 320 15
400 T6-46 11 480 30
420 T8-420ch Charcoal from bulk sample 460 20
430 T6-50 12 410 15
450 T6-42 11 1310 60
480 T6-45 11 785 15
480 T8-33 SE Tier M 33 1105 20
400 T1-244 67 (–890) 90

(continued )
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TABLE 1. RADIOCARBON DATES (continued)

Events Unit Sample no. Trench panel* 14C age (yr B.P.) ±1σ

Event 5 Top of 500

A.D. 1231 to A.D. 1276
Mean = A.D. 1258

500-520 T1-302 50 740 15
500 T8-500ch1 Charcoal from bulk sample 885 20
500 T8-500ch2 Charcoal from bulk sample 870 15
500 T8-500s Seed from bulk sample 875 15
500 T1-301 50 890 20
520 T6-61 16 1240 15
530 8-66  SE Tier M 28 1140 25
530 T6-54 14 1045 15
540 T6-60 16 1120 15
540 8-32 SE Tier M 32 995 30

540-500 T6-53 14 2080 60
550 T8-81 SE Tier M 34 1200 20
560a T6-55 14 2160 80
560a T6-56 14 1185 15
560 8-85 SE Tier M 32  Dissolved in pretreatment
560? T1-227 50 960 25

Event 6 Top of 570

A.D. 872 to A.D. 1012
Mean = A.D. 946

570 T8-71 NW Tier M 35 1150 25
580 T1-268 79 1185 20
580 T1-232 60 Modern  
590 8-58 NW Tier M 32 (–3580) 150
590 T8-106 SE Tier M 30 1280 35

Event 7 Top of 600

A.D. 731 to A.D. 856
Mean = A.D. 796

600 T8-88 NW Tier M 36 1205 20
600 T9-137 NW Tier 2 33-34 1600 20
600 T9-140 NW Tier 2 33-34  (–4030) 100
600 T1-254 68 1470 30
620 8-72 SE Tier M 28 1280 25

640 to 680 8-62 SE Tier L 31 1580 25
640 T9-133 NW Tier 2 33-34 1620 40

650 to 680 8-108 SE Tier M 18 1435 25
650 to 680 8-107 SE Tier M 18 1260 25

690 8-90 NW Tier M 11 Dissolved in pretreatment
690 8-37 SE Tier M 29 1520 25
690 8-100 SE Tier L 12 1550 25
670 T9-138 NW Tier 2 33-34 1980 30
690 T9-139 NW Tier 2 33-34 1545 15
690 T1-230 55 1550 20
690 T8-93 NW Tier M 31 1720 20
695 T8-89 NW Tier M 32 1505 20

Event 8 Top of 700

A.D. 650 to A.D. 733
Mean = A.D. 686

700 T8-76 SE Tier M 31 1365 20
700 T1-234 60 1685 25
700 T1-235 62 1725 20
700 T9-97 NW Tier 2 31-32 2720 150
710 T8-68 SE Tier M 28 1460 20
710 8-47 SE Tier M 29 1910 25
730 8-95 NW Tier M 31 Dissolved in pretreatment
750 8-28 NW Tier M 31 Dissolved in pretreatment
750 T8-79 SE Tier M 32 1995 20
750 T1-239 63 (–1105) 35
760 8-74 NW Tier M 11 1500 30
790 8-96 NW Tier M 28 1575 25
790 T9-135 NW Tier 3 32-34 1910 40
790 T9-94 NW Tier 3 32-34 1725 30
790 T8-191 SE Tier L 32 2390 60
790 T8-153 SE Tier L 31 2040 40

(continued )
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TABLE 1. RADIOCARBON DATES (continued)

Events Unit Sample no. Trench panel* 14C age (yr B.P.) ±1σ

Event 9 Top of 800

A.D. 562 to A.D. 601
Mean = A.D. 582

800 T1-250 67 1705 25
800 T8-800s Seed from bulk sample 1500 15
810 T8-810s Seed from bulk sample 1510 20
820 T9-30 SE Tier 2 22-23 1445 15
850 T9-96 NW Tier 4 33-34 1640 15
850 T8-187 SE Tier M 29 1580 20
880 T9-35 SE Tier 4 31-32 3320 70
890 T8-128 NW Tier M 11 1755 20

Event 10 Top of 900

A.D. 300 to A.D. 387
Mean = A.D. 358

910 T9-70 SE Tier 4 33-34 1705 15
910 8-123 NW Tier M 7 1705 25
920 8-163 NW Tier L 11 1685 30
940 8-181 NW Tier L 11 Dissolved in pretreatment
940 T9-60 NW Tier 4 32-33 1880 15
940 T9-88 SE Tier 4 32-33 1805 15
950 T8-141 SE Tier L 12 1720 20
960 T9-93 SE Tier 4 31-32 1830 90
960 T8-140 SE Tier L 12 2150 60

Event 11 Top of 970

A.D. 235 to A.D. 328
Mean = A.D. 271

970 T8-133 SE Tier L 13 1835 35
970 T8-134 SE Tier L 13 1770 20
990 T8-116 NW Tier L 10 1780 20
990 T9-108 NW Tier 4 32-33 1850 15

Event 12a, 12b Top of 1000

A.D. 147 to A.D. 216
Mean = A.D. 182

1000c T9-90 SE Tier 4 32-33 1815 15
1000 T8-1000ch Charcoal from bulk sample 2100 15
1020 T9-55 NW Tier 4 30-31 2210 15
1020w T9-82 SE Tier 4 32-33 1875 20
1020 T9-117 SE Tier 4 26-27 1815 15
1055w T9-73 SE Tier 4 31-32 1925 20

Event 13 Top of 1060

297 B.C. to A.D. 85
Mean = 102 B.C.

1060 T9-66 NW Tier 4 31-32 2210 15
1060 T9-72 SE Tier 4 30-31 2480 15
1060 T9-14 NW Tier 4 14-15 2885 20

Event 14 Top of 1070

1275 B.C. to 1016 B.C.
Mean = 1132 B.C.

1080 T9-126 NW Tier 4 11-12 3380 15
1082 T9-26 SE Tier 4 12-13 3150 15
1090 T8-121 NW Tier L 6 2920 70
1090 T9-10 SE Tier 4 15-16 3090 20
1090 T9-129 NW Tier 4 13-14 3130 15
1095 T9-37 NW Tier 4 13-14 3320 20

Event 15 Top of 1150, Below 1090

1581 B.C. to 1522 B.C.
Mean = 1551 B.C.

1150 T9-20 NW Tier 4 11-12 3810 60
1150 T9-78 NW Tier 4 11-12 3310 20
1190 T9-19 NW Tier 4 11-12 3310 15

Event 16 Top of 1200

1616 B.C. to 1556 B.C.
Mean = 1587 B.C.

1200 T9-24 SE Tier 4 10-11 3290 15
1200 T9-12 NW Tier 4 9-10 3525 20
1200 T9-29 NW Tier 4 11-12 4040 60

Notes: Radiocarbon dates are presented in stratigraphic order, with event horizons denoted by underlined text. Gray shading indicates samples that were not 
used in the preferred OxCal model. Most of the shaded samples were eliminated because they were older than samples stratigraphically below them, or they 
were significantly older than samples within the same unit. Note, however, that some samples with older ages than those below them were retained when the 
probability distribution of the older and younger sample ages overlapped, such that the samples could be the same age or in time-stratigraphic order. Calibrated
age ranges given for each event are 95.4% confidence intervals.

*Trench walls were divided into 1-m-wide panels on each trench tier, and panels were named according to their distance (in meter intervals) from a starting 
point at one end of each trench. Absolute locations of individual trench panels are not consistent between trenches.
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RESULTS

The trenches exposed evidence for repeated surface ruptures along fault 
A (Fig. 2), which consisted of a main fault zone that showed northeastside
down displacement, and a secondary fault zone 20 m to the southwest in the 
uplifted side (Fig. 4). Evidence of surface ruptures included upward termina
tions of faults, filled fissures, folding of strata across the main fault zone, and 
onlap of stratigraphic layers and angular unconformities associated with ver
tical movement across the main fault zone (Figs. 4–8). The earthquake record 
is most complete in the main fault zone at the northeast end of the trenches. 
There, the repeated subsidence of the sag during earthquakes creates accom
modation space for additional sediment to be deposited, enabling us to dis
tinguish between one earthquake rupture and the next. The stratigraphic level 
that represents the ground surface at the time of an earthquake and marks the 
upper limit of faulting at the site for that individual earthquake is defined as the 
“earthquake horizon.” Almost all of the earthquake horizons at the Mystic Lake 
site occur at the top of finegrained, dark, organic layers. We interpret these lay
ers to be paleosols that developed at the surface during periods of depositional 
quiescence and soil formation in between earthquakes. On top of the earth
quake horizons, there are lightercolored clay or siltyclay deposits that are less 
tilted than the underlying organicrich layers, and that thin as they approach 
and cross the main fault zone (Figs. 4–8). We interpret clayrich layers to repre

sent filling of the sag after it experienced subsidence during an earthquake. The 
stratigraphic relationships show that each successive rupture faulted and/or 
folded the soil that existed at the surface at the time of the earthquake, and then 
the sag slowly filled with sediment. A soil later developed at the surface on the 
new sediment until the next earthquake caused renewed subsidence.

We documented evidence for 16 surface ruptures over the past 3700 yr. 
Paleoseismic event evidence collected from the five trenches across fault A 
is shown in Figures 4 through 11 and summarized in Table 2. Evidence of the 
three oldest events (between 1700 B.C. and 1000 B.C.) was only found along 
fault strands within the secondary fault zone (Figs. 9–11), where older sedi
ments have been elevated by southwestsideup slip along the main fault zone 
of fault A. Trenches 8 and 9 were not deep enough to expose sediments of this 
age within the main fault zone, so we have no record of events between ~1000 
B.C. and 100 B.C. (Fig. 12). We do believe we have a complete record, however, 
for the past 2000 yr, during which there were 12 or 13 groundrupturing earth
quakes. We generated probability density functions for the open intervals be
tween each earthquake (we did not include the current open interval) and used 
the means of these individual distributions to estimate recurrence interval and 
the coefficient of variation. The mean recurrence time between earthquakes 
varied from 86 to 312 yr, with a mean recurrence interval for all 13 earthquakes 
of 160 yr and a standard deviation of 76. This results in a coefficient of variation 
of 0.48 for the past 2000 yr.
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INTERPRETATIONS

Recurrence Intervals and the Current Open Interval

The Mystic Lake paleoseismic record (Fig. 12) shows no strong clustering 
of earthquakes during the past 2000 yr, and the 0.48 coefficient of variation 
suggests fairly regular ruptures. The most recent groundrupturing earthquake 
occurred in the early 1800s. A rupture at the same time is also recorded at both 
of the two paleoseismic sites that have been studied farther to the northwest 
on the northern San Jacinto fault: the Quincy site (Onderdonk et al., 2015) and 
the Colton site (Kendrick and Fumal, 2005). This rupture may be one of two 
large historic earthquakes that caused damage at several Spanish missions in 
southern California on 22 November 1800 and 8 December 1812 (Toppozada 
et al., 2002). The 22 November 1800 earthquake, however, is interpreted to 
have occurred farther south along the San Jacinto fault, since it mainly caused 
damage at the San Juan Capistrano and San Diego missions, and it is pre
served in paleoseismic records along the central San Jacinto fault (Salisbury 
et al., 2012; Rockwell et al., 2015). Grant Ludwig et al. (2015) hypothesized that 
the 8 December 1812 earthquake that ruptured the Mojave section of the San 
Andreas fault (Jacoby et al., 1988; Toppozada et al., 2002) also ruptured the San 

Jacinto fault, based on the low levels of ground motion required to preserve 
precariously balanced rocks in the area near the juncture of the two faults. 
Based on fitting dynamic rupture models to historic and paleoseismic records 
of this earthquake in the region, Lozos (2016) further hypothesized that this 
earthquake began on the northern San Jacinto fault and propagated onto the 
San Andreas fault. In light of these studies, we believe the most recent event 
at Mystic Lake was the 8 December 1812 earthquake. An alternative interpre
tation is that the most recent event on the northern San Jacinto fault was not 
substantial enough to be documented in historic records, but this seems un
likely because of the large size of the earthquake that should have occurred in 
a rupture that extended most of the length of the fault. The open interval that 
has occurred since the most recent earthquake is at least 167 yr, and possibly 
as long as 217 yr (206 yr if the earthquake occurred in A.D. 1812). This is equal 
to or longer than the average recurrence interval (160 ± 76 yr) for the northern 
San Jacinto fault during the past 2000 yr (Fig. 12), suggesting the fault may be 
near failure. There are three intervals between earthquakes, however, that may 
have been just as long, or longer, as the current open interval, given the uncer
tainties in earthquake ages. For example, the open interval between events 5 
and 6 could have been as long as 400 yr if event 6 occurred at the oldest end 
of its possible time range and event 5 occurred at the young end of its time 
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range. Open intervals between events 6 and 7, and between events 9 and 10 
could have been as long as 250 and 300 yr, respectively.

Similar relationships exist between the average recurrence interval and the 
present open interval for sites on the southern San Andreas fault (Fig. 13). At 
the Wrightwood paleoseismic site, on the Mojave section of the San Andreas 
fault, the most recent earthquake was in A.D. 1857 (160 yr ago), but the recur
rence interval for the past 2000 yr is only 95 ± 5 yr (Scharer et al., 2010; Field 
et al., 2013). On the San Bernardino section of the San Andreas fault, the most 
recent earthquake was in A.D. 1812 (206 yr ago), while the recurrence interval 
is only 147 ± 14 yr at the Pitman Canyon site, and 173 ± 8 yr at the Burro Flats 
site (Field et al., 2013). However, like the Mystic Lake record, each one of these 
sites has open intervals in their prehistoric records that may be equally as long 
as the current open interval, given the uncertainties in event ages. The same is 
true when looking at the San Jacinto and San Andreas faults combined; there 
appears to be an unusual lack of ruptures in the area during the past 150 yr, 
but there are multiple time spans in the past 1200 yr where 150 yr intervals 
with no earthquakes on either fault are possible within the limits of dating 

uncertainties (for example, A.D. 900 to A.D. 1050, A.D. 1080 to A.D. 1240, or 
A.D. 1520 to A.D. 1680). Therefore, it appears that the current open interval 
may not be unusual and does not indicate some fundamental change in the 
fault system behavior.

Rupture across Stepovers

The northern San Jacinto fault (Claremont strand) forms a 2kmwide step
over with the central San Jacinto fault (Clark strand), with ~24 km of overlap 
between the two faults (Fig. 1). The Mystic Lake site is located on the northern 
San Jacinto fault at the north end of this stepover, making it a good location 
at which to evaluate the possibility of rupture across the step. Both the Mystic 
Lake site on the northern San Jacinto fault and the Hog Lake site on the central 
San Jacinto fault (Rockwell et al., 2015) record at least 12 surface ruptures in 
the past 2000 yr (Fig. 13), but visual comparison of the two records shows 
no clear patterns of coincidence between ruptures on the two fault strands.  
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TABLE 2. EVENT EVIDENCE FROM MYSTIC LAKE TRENCHES

Event

Event horizon 
with respect to 
numbered units

Exposure: Trench no. (T) 
and meter no. (M) 

along the trench wall Evidence Confidence

ML0* Top of 10 and 
possibly higher

T1 M52 Thickening of the sand layer across the fracture zone into the sag and folding of Unit 10 (Fig. 5) Strong

T7 M13 Faults offset Unit 10 with 1–3 cm down-to-the-northeast separation and may extend up into Unit 1
Upward termination of fractures
Thickening of the sand layer across the fracture zone into the sag (see Onderdonk et al., 2013)

Strong

T6 M17 Faults offset Unit 10 with down-to-the-SW displacement (see Onderdonk et al., 2013) Strong
ML1 Top of 100 T1 M52,53 Upward termination of two clay seams with down-to-the-SW displacement (Fig. 5) Strong

T1 M17, 33 Faults cut Unit 200 and are lost in Unit 100 (see Onderdonk et al., 2013) Weak
T1 M76 Upward termination of fault Strong

T6 M14, 15
nwM13, 15

Upward termination of faults with down-to-the-NE displacement (see Onderdonk et al., 2013) Strong

T7 M13, 14, 15 Upward termination of numerous fractures without resolvable displacement and one or two faults that 
appear to disrupt two white silt layers within Units 100-200 (see Onderdonk et al., 2013)

Moderate

ML2 Top of 200 T1 M59 east Upward termination of a fault, fissure fill Strong
T1 M18 Upward termination of a fault, SW side down (see Onderdonk et al., 2013) Strong
T1 M72 Upward termination of faults Strong
T1 M77 Upward termination of a fault Strong

T6 nwM16,17 Upward termination of faults (see Onderdonk et al., 2013) Strong
ML3 Top of 300 T1 M33 Upward termination of faults, NE side down (Fig. 5) Strong

T1 M45-53 Folding of Unit 300 and below across the SW fault zone (Fig. 5) Strong
T7 M12 Upward termination of faults that define a graben Strong

T7 M7-12 Folding of Unit 300 and below, truncated by an angular unconformity at the base of Unit 250; onlap 
and pinching of Units 290, 270 against a fold scarp (see Onderdonk et al., 2013)

Strong

ML4 Top of 400 T1 M50,51 Upward termination of faults (Fig. 5) Strong
T1 M45-51 Thinning and pinching of Units 300–400 against the E4 fold scarp (Fig. 5) Strong

T6 M14 Upward termination of faults (see Onderdonk et al., 2013) Strong
ML5 Top of 500 T1 M51 Upward termination of faults (Fig. 5) Strong

T1 M45-54 Thinning of units above the event horizon across the faults (Fig. 5) Strong
T6 M14 Upward termination of fault (see Onderdonk et al., 2013) Strong

T6 M16, 17 Possible upward termination of faults (see Onderdonk et al., 2013)
ML6 Top of 570 T1 M51,52,53 Upward termination of faults (Fig. 5) Strong

T1 M53 Possible fissure fill (Fig. 5) Weak
T6 M14 Warping of strata against the fault (see Onderdonk et al., 2013) Strong
T6 M18 Upward termination of faults (see Onderdonk et al., 2013) Strong

T7 M31SE Tier 2, and 
M30-31 SE Tier 1

Unit 590 is offset, forming a graben that extends down into Unit 750; Unit 570 is filling the graben; Unit 
560 is not offset, but it is discontinuous across the top due to bioturbation; Unit 560 is inferred to be 
unfaulted (see Onderdonk et al., 2013)

Moderate

T9 M34 NW Tier 2 Fault cuts Unit 570 and below (down 8 cm on NE side) but does not cut the base of Unit 560 (Fig. 7) Weak
T8 M31 SE Tier 2 Fissure fill at the base of Unit 570 (Fig. 6) Strong

ML7 Top of 600 T1 M53 Upward termination of fault (Fig. 5) Strong
T1 M54 Upward termination of fault (Fig. 5) Strong
T1 M73 Upward termination of faults (not shown) Strong

T8 M30 SE Tier 2 Units 690 and below are offset 2 cm down on the NE, but Unit 590 does not look offset (Fig. 6) Moderate
ML8 Top of 700 T8 M32 SE Tier 2 Unit 690 thickens across a fault from 8–10 cm on the SW to about 20 cm on the NE with an intervening 

sand layer that probably came off the scarp; the Unit 690/700 contact is offset about 25 cm down on 
the NE side, while the upper contact of Unit 690 is only offset about 10 cm (by a later event that goes
up through Unit 590 and offsets units between 690 and 590 by about 5 to 7 cm) (Fig. 6)

Strong

 *ML0 is interpreted to be the result of local subsidence due to groundwater withdrawal in the twentieth century, and it was therefore not included as an earthquake in our event 
history (see Onderdonk et al., 2013).

(continued)
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TABLE 2. EVENT EVIDENCE FROM MYSTIC LAKE TRENCHES (continued )

Event

Event horizon 
with respect to 
numbered units

Exposure: Trench no. (T) 
and meter no. (M) 

along the trench wall Evidence Confidence

ML8
(continued)

T8 M32 NW Tier 2 Unit 690 thickens across a fault that offsets Unit 790 about 3 to 4 cm down on the NE side; an adjacent 
fault offsets the base of Unit 690 about 10 cm, while the top of Unit 690 is only offset about 5 to 6 
cm; a third fault cuts or warps Unit 700, but Unit 690 does not look offset (not shown in figures)

Strong

T9 M31 NW Tier 2 Fault cuts Unit 790 and below, hard to trace through 700s but does not cut Unit 690 (Fig. 7) Strong
T9 M34 NW Tier 3 Fault cuts Unit 750 and below, but does not cut Unit 690 (Fig. 7) Weak (could 

merge with 
adjacent fault)

ML9 Top of 800 T8 M29 SE Tier 2 Clay seam that offsets deeper layers is truncated at the base of Unit 790 (Fig. 6) Strong
T8 M28 SE Tier 2 Fault that offsets deeper layers is truncated at the base of Unit 790 (Fig. 6) Strong
T8 M13 SE Tier 2 Fault offsets Units 820, 840 and below (3 cm down-to-the-NE), but it is truncated at the base of Unit 

790 (Fig. 6)
Strong

T8 M32 SE Tier 3 Fault offsets Unit 800 and below down 4 cm on the NE side, but it does not cut Unit 790; Unit 790 
thickens across the fault (not shown in figures)

Strong

T9 M27 SE Tier 2 Fissure fill; Unit 790 dropping into a fissure in Unit 800, which is offset 5 cm on NE side (Fig. 8) Strong
T9 M32 SE Tier 3 Offset units below Unit 800 (up on NE side), but units 790 and 800 do not look offset (Fig. 8) Weak (faults 

cannot be followed 
downward)

T9 NW wall Tiers 2 and 3 Warping and pinching of fine-grained layer between Units 790 and 800 (Fig. 7) Moderate
ML10 Top of 900 T8 M10 NW Tier 2 A graben drops Unit 900 down, but Units 850 and 840 are not disturbed, and Unit 890 seems to go 

across the fault undisturbed as well (Fig. 9)
Weak

T8 M12 NW Tier 2 Unit 900 sags down, while Unit 890 goes straight across (Fig. 9) Strong
T8 M11 NW Tier 2 Unit 900 is tilted down between two faults; the fault on the right is probably capped by Unit 890 and is 

definitely capped by Units 850 and 840; the fault on the left goes up higher through Unit 790 (Fig. 9)
Strong

T8 M29 SE Tier 3 Unit 900 is offset by a fault, but Unit 890 drapes across, and Units 840, 850 go right across (not shown
in figures)

Moderate

T8 M26 NW Tier 3 Fissure developed in Unit 900 and below; Unit 890 fills the fissure and drapes across (not shown in 
figures)

Strong

T9 M34 NW Tier 4 Fissure cuts Unit 900 and below (down 10 cm on SW side), filled by Unit 880, which drapes across 
(Fig. 7)

Strong

T9 M33 SE Tier 4 Fissure cuts Unit 900 and below (down 10 cm on SW side), filled by Unit 880, which drapes across 
(Fig. 8)

Strong

ML11 Top of 970 T8 M10 NW Tier 3 Faults cut and tilt Unit 990 and below, but do not cut Unit 960 (Fig. 9) Strong
T8 M11 NW Tier3 Faults cut and tilt Unit 990 and below, but do not cut Unit 960 (Fig. 9) Strong
T8 M12 NW Tier 3 Faults cut and tilt Unit 990 and below, and truncate Unit 970, but do not cut Unit 960 (Fig. 9) Strong

ML12a Top of 1000b T9 M33 NW Tier 4 Fissure that may end upward around Unit 1000a or 1000b (clay that also fills the fissure?), and 
definitely ends below Unit 990 (Fig. 7)

Moderate

ML12b Top of 1000c T9 M33 SE Tier 4 A fault offsets Unit 1020, truncates Units 1010 and 1000e, and sharply warps Units 1000d (sand) and 
1000c (dark layer); Unit 1000b (clay) thickens across the scarp, thus postdating the event (Fig. 8)

Moderate

T9 M32 SE Tier 4 Fissure that is capped around Unit 1000b (Fig. 8) Weak
ML13 Top of 1060 T9 Whole trench Units between 1060 and 1020 pinch out against Unit 1060 from NE to SW; Unit 1060 is tilted more 

than units above; strong tilt at M16 and another strong warp (possibly offset) at M24 (Fig. 4)
Strong

ML14 Base of 1060 or 
within 1070

T9 M11-13 SE Tier 4 Unit 1082 offset 10 cm down to NE; base of Unit 1060 not cut; faults extend down into a graben at 
depth that does not affect Unit 1060 (Fig. 10)

Moderate

ML15 Base of 1090 T9 M14 NW Tier 4 Unit 1200 is offset 10 to 15 cm down-to-the-NE; fissures in Unit 1150, but base of 1090 is not cut Strong
T9 M12 NW Tier 4 Fractures cut up through Unit 1150, but do not cut Unit 1090 (Fig. 11) Moderate

ML16 Base of 1150 T9 M14 NW Tier 4 Top of Unit 1200 is offset, but the top of Unit 1200 does not continue to the faults that define the next 
higher event (E15), suggesting that a fissure existed in Unit 1200 before Unit 1150 was deposited;
also a thin clay layer (Unit 1190) drapes across the offset Unit 1200, and this clay layer is offset by 
E15 faults (Fig. 11)

Moderate

Notes: Summary of evidence for earthquakes on the primary active strand (fault A) at Mystic Lake, with reference to the figures that show evidence for each event. Event evidence 
from trenches T1, T8, T9 is shown in Figures 4–11. Note that not all event evidence is shown in the figures presented here; photologs of trenches T6 and T7 were presented in 
Onderdonk et al. (2013).
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Relative quiet on one fault strand during some time periods while the other is 
more active suggests these fault strands are not rupturing together or triggering 
each other most of the time. There are, however, three events for which the age 
ranges are almost identical at the two sites (ML3, ML6, and ML11), which tempts 
the interpretation that these events may have ruptured both fault strands. How
ever, uncertainties in the event dates (typically tens to hundreds of years) make 
it impossible to correlate events from two different paleoseismic sites. Statisti
cal analysis of overlapping probability density functions for earthquakes does 
not provide any benefit to correlation confidence, since even fully overlapping 
probability density functions only provide a range of time during which two 
completely unrelated earthquakes could have occurred decades or even years 
apart. For this reason, additional constraints, such as event size and/or rupture 
length, are needed to evaluate the probability of event correlation between two 
sites (e.g., Biasi and Weldon, 2009). For the rupture histories considered here, 
measurements of slipperearthquake on the northern San Jacinto fault provide 
information about the average earthquake size that supports the idea of occa
sional joint rupture of fault strands separated by steps at the north and south 
ends of the Claremont strand. The age of offset streams and timing of earth
quakes at the Quincy site (Fig. 1) indicate that the average slip during ruptures in 

the past 11 or 12 earthquakes was 2.5 m, and greater than 3 m for the last three 
earthquakes (Onderdonk et al., 2015). If we assume that slip measurements at 
the site are representative of the average surface slip along the rupture length 
of these earthquakes, then the observed value of 2.5 m or more of slip in these 
events suggests rupture lengths of ~110 km or more (Wells and Coppersmith, 
1994), which is longer than the 75 km total length of the Claremont strand. The 
earthquakes that were larger than the average, especially one or more of the 
last three, likely extended beyond the length of the fault and continued through 
one of the steps at either end of the Claremont strand. The strongest evidence 
for this exists for event 3 at Mystic Lake, which we interpret to have been a very 
large earthquake based on the large amount of tilting observed in the Mystic 
Lake trenches at the stratigraphic level of event 3, and evidence of 3.1 m to 3.6 m 
of lateral slip during this event at the Quincy site (Onderdonk et al., 2013, 2015).

Cajon Pass “Earthquake Router”

During the past 1000 yr, there were nine earthquakes recorded on the Mo
jave section of the San Andreas fault at Wrightwood, but only six recorded 
at paleoseismic sites on the San Bernardino section of the San Andreas fault 
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to the southeast (Fig. 13). An additional nine earthquakes were recorded at 
Wrightwood during the preceding millennium, while only three are recorded 
in the record from Burro Flats. No data exist for this earlier time period from 
the Pitman Canyon site, but unless there was a big change in recurrence inter
val around A.D. 1000, we can assume that there were a larger number of earth
quakes on the San Andreas fault northwest of Cajon Pass than to the southeast 
for the past 2000 yr. This suggests that some ruptures on the Mojave section 
of the San Andreas fault stop in Cajon Pass, as did the Fort Tejon earthquake 
in 1857, with Cajon Pass acting as an “earthquake gate” (term from Oskin et al., 
2015), which can inhibit or facilitate a throughgoing rupture. However, the 
structure and tectonic geomorphology of the San Andreas fault through Cajon 
Pass are relatively continuous and show no obvious indication of a barrier to 
rupture propagation at the surface (e.g., Sedki, 2013; USGS Qfaults database: 
Machette et al., 2004) or in threedimensional fault models (Plesch et al., 2007). 
If large ruptures on the Mojave segment of the San Andreas fault are occasion
ally starting or stopping in Cajon Pass, work is needed to identify the type of 
geologic, structural, or stress conditions that are responsible for this.

An alternative to ruptures stopping in Cajon Pass is the possibility of rup
ture being directed onto the adjacent San Jacinto fault, and several lines of evi

dence support this interpretation. First, the differences between the number of 
earthquakes recorded on the San Andreas fault north and south of Cajon Pass, 
and the recurrence intervals for the three fault sections show that the Mojave 
section of the San Andreas fault ruptures almost twice as frequently as the 
San Bernardino section of the San Andreas fault or the San Jacinto fault (Fig. 
13). Second, the spatial distributions of slip rates on the San Andreas fault and 
San Jacinto fault indicate that displacement is being transferred between the 
two faults. The ~34 mm/yr slip rate of the Mojave section of the San  Andreas 
fault (e.g., Dawson and Weldon, 2013) is divided between the San Bernardino 
section of the San Andreas fault (7–15.7 mm/yr; McGill et al., 2013) and the 
northern San Jacinto fault (12.8–18.3 mm/yr; Onderdonk et  al., 2015), with 
2–5 mm/yr possibly distributed to the reverse faults at the margins of the San 
 Gabriel and San Bernardino Mountains (McGill et al., 2013, 2015). A correlative 
distribution of coseismic slip on the Mojave section of the San Andreas fault 
between these two fault sections to the southeast and south would be a sim
ple way of accommodating the division of accumulated slip from the Mojave 
segment of the San Andreas fault southward. Third, the average slipperevent 
on the northern San Jacinto fault indicates that some ruptures on the fault may 
have extended beyond one (or both) of the stepovers at the ends of the fault.  
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The stepover between the northern end of the San Jacinto fault and the 
San Andreas fault in Cajon Pass is only 1.6 km wide (Fig. 1), which is nar
row enough to allow rupture propagation between the two faults, based on 
observations of historic ruptures across stepovers (Wesnousky, 2006). These 
characteristics of the three fault sections lead us to infer that some of the San 
Andreas fault ruptures that are “missing” from the San Bernardino segment 
of the San Andreas fault paleoseismic sites are present in the Mystic Lake 
record and represent joint rupture of the Mojave segment of the San Andreas 
fault and the northern San Jacinto fault. We note that if the Burro Flats paleo
seismic record is complete (or mostly complete) for the past 2000 yr, then 
joint rupture of the San Andreas fault and San Jacinto fault may have been 
more common between A.D. 0 and A.D. 1000 than during the past 1000 yr. 
Activity at the Wrightwood site has been relatively constant during the past 
2000 yr, with nine earthquakes recorded in each of the past two millennia (Fig. 
13). However, the San Bernardino section of the San Andreas fault appears 
to have been more active between A.D. 1000 and the present, with six earth
quakes recorded at Burro Flats, compared to only three between A.D. 0 and 
A.D. 1000. The Mystic Lake site shows an opposite pattern, with five earth
quakes between A.D. 1000 and the present, compared to eight earthquakes 
between A.D. 0 and A.D. 1000.

These observations of San Jacinto fault and San Andreas fault kinematics 
support previous interpretations based on modeling and inferred strong 
ground motion patterns that inferred that ruptures can propagate from one 
fault to the other in the Cajon Pass area (Anderson et al., 2003; Grant Lud
wig et al., 2015; Lozos, 2016). Grant Ludwig et al. (2015) also suggested that 
ruptures that did not jump across the step most likely started or stopped 
in Cajon Pass, and that throughgoing rupture on the San Andreas fault is 
rare. Our comparison of paleoseismic data from the past 2000 yr presented 
here cannot directly test the idea that throughgoing ruptures on the San 
Andreas fault are rare. However, the paleoseismic data do provide another 
line of evidence that supports the idea that the Cajon Pass area acts as an 
“earthquake router,” where ruptures have an end point in the Cajon Pass 
area, propagate across the step from one fault to another (or to one of the 
reverse faults of the Transverse Ranges), or continue through on the San 
Andreas fault.

Implications for a Large Southern San Andreas Earthquake

The possibility of joint rupture of the northern San Jacinto fault and the 
Mojave segment of the San Andreas fault has implications for probabilities 
of major earthquakes in the southern California fault system. To explore the 
effects on the population of southern California, Jones et al. (2008) modeled a 
large rupture on the southern San Andreas fault, nucleating on the Coachella 
Valley section of the San Andreas fault and propagating northward through 
the San Gorgonio Pass onto the Mojave segment of the San Andreas fault 
(called “The ShakeOut Scenario”). We propose that a more likely scenario for 

such a large event is the joint rupture of the San Jacinto fault and the Mojave 
section of the San Andreas fault, because this scenario involves a rupture 
path that has less structural complexity than the southern San Andreas fault. 
The southern San Andreas fault includes a structurally complex restraining 
bend in the San Gorgonio Pass, composed of an obliquethrust system with 
strikeslip tear faults that link the San Andreas fault in Coachella Valley to the 
San Bernardino area (e.g., Morton and Matti, 1993; Yule and Sieh, 2003). Con
versely, the San Jacinto fault is straighter and contains only narrow dilational 
steps that modeling suggests are mechanically easier for ruptures to pass 
through than similarsized restraining bends or steps (Oglesby, 2005). In a 
large southern San Andreas fault rupture (e.g., Bombay Beach to the Mojave 
segment of the San Andreas fault, as modeled by Jones et al., 2008), average 
displacement would be expected to be 4 m or more, and it is more likely to 
be near the maximum in the middle of the rupture along the San Bernardino 
segment. Average slipperevent on the San Bernardino segment of the San 
Andreas fault during the past 1000 yr, calculated from the number of earth
quakes at Pitman Canyon and Burro Flats and the latest Pleistocene slip rate 
(McGill et al., 2013), is only 1.2–2.7 m/event. This is not as high as would be 
expected if a full southern San Andreas fault rupture had occurred during 
this time period, and it is lower than the average slipperevent values for the 
past 1000 yr on the northern San Jacinto fault (2.5–3.5 m/event: Onderdonk 
et al., 2015) and the Mojave segment of the San Andreas fault (3.9 m/event: 
calculated here from the number of earthquakes recorded at the Wrightwood 
site and the slip rate). This suggests a “ShakeOut Scenario” event has not oc
curred in the past 1000 yr. Heermance and Yule (2017) showed that the thrust 
system in the San Gorgonio Pass has experienced offsets of 4–8 m in single 
events that may involve the San Andreas fault on both sides of the pass, but 
they noted that these are infrequent events (once every 1000–1500 yr). The 
long intervals between ruptures in the San Gorgonio Pass area also indicate 
that some of the hypothesized correlations between earthquakes recorded at 
paleoseismic sites on the San Andreas fault in Coachella Valley and the San 
Bernardino area (e.g., Philibosian et al., 2011; Rockwell et al., 2016) are incor
rect and that the “ShakeOut Scenario” is not as common as these correlations 
would suggest. This is supported by observations that precariously balanced 
rocks exist in the San Bernardino Mountains near the San Andreas fault, 
where strong ground motion would be expected from a large San  Andreas 
fault rupture that extended from Coachella Valley through the Cajon Pass 
(Grant Ludwig et al., 2015). Such a rupture would have toppled the precari
ously balanced rocks, indicating that a large rupture on the San Andreas fault 
through this area has not occurred in several thousand years (Grant Ludwig 
et al., 2015). The available paleoseismic data, average slipperevent data, dis
tribution of precariously balanced rocks, and the structural geometry of the 
two fault zones summarized here suggest to us that very large earthquakes in 
the southern San Andreas fault system may be more likely to occur from joint 
rupture of the Mojave segment of the San Andreas fault and the San Jacinto 
fault, rather than a San Andreas fault–only rupture from the Mojave Desert to 
Coachella Valley.
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